Issue #101 Three Thousand Years of Algorithmic Rituals: The Emergence of AI from the Computation of Space

Three Thousand Years of Algorithmic Rituals: The Emergence of AI from the Computation of Space

Matteo Pasquinelli

101_Pasquinelli_1

Illustration from Frits Staal, "Greek and Vedic geometry" Journal of Indian Philosophy 27.1 (1999): 105-127.

Issue #101
June 2019










Notes
1

Paul Virilio, La Machine de vision: essai sur les nouvelles techniques de representation (Galilée, 1988). Translated as The Vision Machine, trans. Julie Rose (Indiana University Press, 1994), 12.

2

The Dutch Indologist and philosopher of language Frits Staal documented the Agnicayana ritual during an expedition in Kerala, India, in 1975. See Frits Staal, AGNI: The Vedic Ritual of the Fire Altar, vol. 1–2 (Asian Humanities Press, 1983).

3

Kim Plofker, “Mathematics in India,” in The Mathematics of Egypt, Mesopotamia, China, India, and Islam, ed. Victor J. Katz (Princeton University Press, 2007).

4

See Wilhelm Worringer, Abstraction and Empathy: A Contribution to the Psychology of Style (Ivan R. Dee, 1997). (Abstraktion und Einfühlung, 1907).

5

For an account of the mathematical implications of the Agnicayana ritual, see Paolo Zellini, La matematica degli dèi e gli algoritmi degli uomini (Adelphi, 2016). Translated as The Mathematics of the Gods and the Algorithms of Men (Penguin, forthcoming 2019).

6

See Frits Staal, “Artificial Languages Across Sciences and Civilizations,” Journal of Indian Philosophy 34, no. 1–2 (2006).

7

Jean-Luc Chabert, “Introduction,” in A History of Algorithms: From the Pebble to the Microchip, ed. Jean-Luc Chabert (Springer, 1999), 1.

8

Jean-Luc Chabert, “Introduction,” 1–2.

9

Gilles Deleuze and Félix Guattari, Anti-Oedipus: Capitalism and Schizophrenia, trans. Robert Hurley (Viking, 1977), 145.

10

See Ubiratàn D’Ambrosio, “Ethno Mathematics: Challenging Eurocentrism,” in Mathematics Education, eds. Arthur B. Powell and Marilyn Frankenstein (State University of New York Press, 1997).

11

Diane M. Nelson, Who Counts?: The Mathematics of Death and Life After Genocide (Duke University Press, 2015).

12

Frank Rosenblatt, “The Perceptron: A Perceiving and Recognizing Automaton,” Technical Report 85-460-1, Cornell Aeronautical Laboratory, 1957.

13

John von Neumann and Arthur W. Burks, Theory of Self-Reproducing Automata (University of Illinois Press, 1966). Konrad Zuse, “Rechnender Raum,” Elektronische Datenverarbeitung, vol. 8 (1967). As book: Rechnender Raum (Friedrich Vieweg & Sohn, 1969). Translated as Calculating Space (MIT Technical Translation, 1970).

14

Alan Turing, “The Chemical Basis of Morphogenesis,” Philosophical Transactions of the Royal Society of London B 237, no. 641 (1952).

15

It must be noted that Marvin Minsky and Seymour Papert’s 1969 book Perceptrons (which superficially attacked the idea of neural networks and nevertheless caused the so-called first “winter of AI” by stopping all research funding into neural networks) claimed to provide “an introduction to computational geometry.” Marvin Minsky and Seymour Papert, Perceptrons: An Introduction to Computational Geometry (MIT Press, 1969).

16

See the work of twelfth-century Catalan monk Ramon Llull and his rotating wheels. In the ars combinatoria, an element of computation follows a logical instruction according to its relation with other elements and not according to instructions from outside the system. See also DIA-LOGOS: Ramon Llull's Method of Thought and Artistic Practice, eds. Amador Vega, Peter Weibel, and Siegfried Zielinski (University of Minnesota Press, 2018).

17

Specifically, a logical or inferential activity does not necessarily need to be conscious or cognitive to be effective (this is a crucial point in the project of computation as the mechanization of “mental labor”). See the work of Simon Schaffer and Lorraine Daston on this point. More recently, Katherine Hayles has stressed the domain of extended nonconscious cognition in which we are all implicated. Simon Schaffer, “Babbage’s Intelligence: Calculating Engines and the Factory System,” Critical inquiry 21, no. 1 (1994). Lorraine Daston, “Calculation and the Division of Labor, 1750–1950,” Bulletin of the German Historical Institute, no. 62 (Spring 2018). Katherine Hayles, Unthought: The Power of the Cognitive Nonconscious (University of Chicago Press, 2017).

18

According to both Gestalt theory and the semiotician Charles Sanders Peirce, vision always entails cognition; even a small act of perception is inferential—i.e., it has the form of an hypothesis.

19

School bus drivers will never achieve the same academic glamor of airplane or drone pilots with their adventurous “cognition in the wild.” Nonetheless, we should acknowledge that their labor provides crucial insights into the ontology of AI.

20

Virilio, The Vision Machine, 76.

21

As Stall and Zellini have noted, among others, these skills also include the so-called Pythagorean theorem, which is helpful in the design and construction of buildings, demonstrating that it was known in ancient India (having been most likely transmitted via Mesopotamian civilizations).

22

In fact, more than machine “learning,” it is data and their spatial relations “teaching.”